题目:
(2012·南长区一模)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.
(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;
(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)
答案
解:(1)结论是PD+PE+PF=AB,
证明:过点P作MN∥BC分别交AB、AC于M、N两点,:
∵PE∥AC,PF∥AB,

∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PD+PE+PF=AM+MB=AB.
(2)如图3,利用(1)中证明方法,即可得出:结论PE+PF-PD=AB.
解:(1)结论是PD+PE+PF=AB,
证明:过点P作MN∥BC分别交AB、AC于M、N两点,:
∵PE∥AC,PF∥AB,

∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PD+PE+PF=AM+MB=AB.
(2)如图3,利用(1)中证明方法,即可得出:结论PE+PF-PD=AB.