试题
题目:
在平面直角坐标系中,已知点A(4,4)、B(-4,4),试在x轴上找出点P,使△APB为直角三角形,请直接写出所有符合条件的P点的坐标.
答案
解:∵点A(4,4),B(-4,4),到x轴上的距离都为4,
∴要使△APB为直角三角形,并且P点的坐标必须在x轴上.
所以点的坐标为(4,0)或(-4,0)或(0,0)
故答案为:P(4,0)或(-4,0)或(0,0).
解:∵点A(4,4),B(-4,4),到x轴上的距离都为4,
∴要使△APB为直角三角形,并且P点的坐标必须在x轴上.
所以点的坐标为(4,0)或(-4,0)或(0,0)
故答案为:P(4,0)或(-4,0)或(0,0).
考点梳理
考点
分析
点评
专题
勾股定理;坐标与图形性质.
根据坐标与图形性质和勾股定理即可求出P点的坐标,但要注意题目要求在x轴上找出点P.
此题主要考查学生对勾股定理和坐标与图形性质这些知识点的理解和掌握,此题中使△APB为直角三角形的点不仅仅是这3个,但要注意题目要求,P点必须在x轴上,所以要求学生做题时一定要仔细,认真审题.
推理填空题.
找相似题
如图,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm,那么AC长为( )
等边△ABC的边长为a,顶点A在原点,一条高线恰好落在y轴的负半轴上,则第三象限的顶点B的坐标是( )
如果等边三角形一边上的高为
3
cm,那么其周长为( )
直角三角形的三边为a-b,a,a+b且a、b都为正整数,则三角形其中一边长可能为( )
如图,图中有一个正方形,此正方形的面积是( )