试题
题目:
设G是△ABC的重心,且AG=6,BG=8,CG=10,则三角形的面积为( )
A.58
B.66
C.72
D.84
答案
C
解:延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,
∴CG′=BG=8,
∵DG=
1
2
AG=3,
∴DG=DG′=3,
∴GG′=6,
∵CG=10,
∴△CGG′是直角三角形,
∴S
△GBC
=S
△CGG′
=
1
2
×8×6=24,
∴S
△ABC
=3S
△GBC
=72.
故选C.
考点梳理
考点
分析
点评
专题
三角形的重心;三角形的面积.
延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,所以CG'=BG=6,根据重心的性质可求得DG=DG′=3,则GG'=6,又CG=10,所以△CGG'是直角三角形,并可求得其面积,从而得出△BGC的面积,即可求得△ABC的面积.
此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
计算题.
找相似题
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2009·绍兴)如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是( )
(2011·建邺区一模)如图,在扇形纸片AOB中,OA=10,∠AOB=36°,OB在桌面内的直线l上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为( )
(2010·长宁区二模)已知P是△ABC内一点,连接PA、PB、PC,把△ABC的面积三等分,则P点一定是( )
(2008·天河区一模)如图所示,在梯形ABCD中,AD∥BC,对角线AC和BD相交于点O,把梯形分成四部分,记这四部分的面积分别为S
1
、S
2
、S
3
、S
4
,则下列判断S
1
+S
2
和S
3
+S
4
的大小关系正确的是( )