试题
题目:
如图,有一个圆柱,它的高为13cm,底面周长为10cm,在圆柱的下底面上A点处有一个蚂蚁想吃到离上底面1cm处的B点的食物,需爬行的最短距离为
13cm
13cm
.
答案
13cm
解:把题中的圆柱沿着A点所在的母线剪开,其展开图为一个矩形,如图所示:
由图根据勾股定理得:AB=
5
2
+
12
2
=13cm,
故需爬行的最短距离为13cm.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.
圆柱的侧面展开为矩形,关键是在矩形上找出A和B两点的位置,“化曲面为平面”,用勾股定理解决.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2004·梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )