试题
题目:
(2009·房山区一模)已知,如图是一个封闭的正方形纸盒,E是CD中点,F是CE中点,一只蚂蚁从一个顶点A爬到另一个顶点G,那么这只蚂蚁爬行的最短路线是( )
A.A·B·C·G
B.A·C·G
C.A·E·G
D.A·F·G
答案
C
解:把图展开A、E、G在同一条线段上,A·E·G之间距离最短.
故选C.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
要求正方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.
本题主要考查两点之间线段最短.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2004·梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )