试题
题目:
蜘蛛和苍蝇在一个圆柱面上,这个圆柱的高为10,底面的半径为4,如图所示,AA′、BB′是圆柱的两条母线,蜘蛛在BB'上的P点,PB′=2,苍蝇在AA′上的Q点,QA=3,蜘蛛沿圆柱表面爬向苍蝇,求最短路程为多少?
答案
解:将曲面沿AA
1
展开,如图所示,过Q作QT⊥BB
1
于T,
在Rt△PQT中,∠PTQ=90°,TQ=10-2-3=5(cm),TP=
1
2
×2π×4=4π(cm),
由勾股定理,得PQ=
T
Q
2
+T
P
2
=
5
2
+16
π
2
=
25+16
π
2
(cm).
答:蜘蛛所走的最短路线是
25+16
π
2
cm.
解:将曲面沿AA
1
展开,如图所示,过Q作QT⊥BB
1
于T,
在Rt△PQT中,∠PTQ=90°,TQ=10-2-3=5(cm),TP=
1
2
×2π×4=4π(cm),
由勾股定理,得PQ=
T
Q
2
+T
P
2
=
5
2
+16
π
2
=
25+16
π
2
(cm).
答:蜘蛛所走的最短路线是
25+16
π
2
cm.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
要求不在同一个平面内的两点之间的最短距离,首先要把两个点展开到一个平面内,然后分析展开图形中的数据,根据勾股定理即可求解.
本题考查了平面展开--最短路径问题.由于蜘蛛与苍绳均属于玻璃容器的外侧,因而蜘蛛不能直接到达点P,需沿侧面爬行.为此,可将曲面沿AA
1
展开,显然蜘蛛所走的最短的路线即为线段PQ,从而可构造直角三角形,用勾股定理求出PQ的长.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2004·梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )