试题
题目:
如图,有一个圆柱体,它的高等于12cm,底面半径等于3cm,一只蚂蚁在点A处,它要吃到上底面上与A点相对的点B处的食物,沿圆柱体侧面爬行的最短路程是
15
15
cm(π的值取3).
答案
15
解:底面周长的一半为:3π≈9cm,
∴高等于12cm,
∴最短路程为
9
2
+
12
2
=15cm,
故答案为15cm.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题.
A、B之间的最短路程为两直角边分别为圆柱的高,底面周长的一半的直角三角形的斜边长.
考查最短路径问题;立体几何中的最短路径问题,通常整理为平面几何中两点之间距离问题.
数形结合.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2004·梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )