试题
题目:
有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离
16cm
16cm
.
答案
16cm
解:
AC的长就是蚂蚁爬行的最短距离.C,D分别是BE,AF的中点.
AF=2π·5=10π.AD=5π.
AC=
AD
2
+
CD
2
≈16cm.
故答案为:16cm.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
圆柱展开就是一个长方形,根据两点之间线段最短可求出结果.
本题考查平面展开-最短路径问题,关键是知道两点之间线段最短.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2009·恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
(2005·山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是( )
(2004·梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )
(2012·平谷区二模)如图是一个长方体,AB=3,BC=5,AF=6,要在长方体上系一根绳子连接AG,绳子与DE交于点P,当所用绳子的长最短时,AP的长为( )