试题

题目:
青果学院如图是一个棱长为4cm的正方体盒子,一只蚂蚁在D1C1的中点M处,它到BB1的中点N的最短路线是(  )



答案
C
解:把正方体的DCC1D1面与CC1B1B面展开在同一平面内,
∵M、N为C1D1和BB1的中点,
∴NB1=2,MC1=2,
在Rt△NMB1中,MN=
22+62 
=2
10

故选C.
考点梳理
平面展开-最短路径问题.
把此正方体的DCC1D1面与CC1B1B面展开在同一平面内,然后利用勾股定理求点M和N点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形MNB1中,一条直角边长等于6,另一条直角边长等于2,利用勾股定理可求得.
本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
找相似题