试题
题目:
如图,P在∠AOB的内部,PC⊥AO于C,PD⊥OB于D,PD=PC,当∠AOP=(2x-10)度,∠BOP=(x+5)度时,∠AOB=
40
40
度.
答案
40
解:∵PC⊥AO于C,PD⊥OB于D,PD=PC,
∴∠AOP=∠BOP,
∴2x-10=x+5,
解得x=15°,
∴∠AOP=∠BOP=15°+5°=20°,
∴∠AOB=∠AOP+∠BOP=20°+20°=40°.
故答案为:40.
考点梳理
考点
分析
点评
角平分线的性质.
根据到角的两边距离相等的点在角的平分线上可得∠AOP=∠BOP,然后列出方程求出x,从而得到∠AOP、∠BOP,再根据∠AOB=∠AOP+∠BOP计算即可得解.
本题考查了到角的两边距离相等的点在角的平分线上,熟记角平分线的判定方法是解题的关键.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )