试题
题目:
在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是
2
2
.
答案
2
解:由角平分线的性质,得点D到AB的距离=CD=2.
故答案为:2.
考点梳理
考点
分析
点评
专题
角平分线的性质.
根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离=CD=2.
本题主要考查平分线的性质,属于基础题,由已知能够注意到D到AB的距离即为CD长是解决的关键.
计算题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )