试题
题目:
如图,∠ABC=30°,D为∠ABC平分线上一点,DE⊥BC交BC于点E,DF∥BC交AB于点F,若DF=4,则DE=
2
2
.
答案
2
解:如图,过D作GD⊥AB于G,
∵D为∠ABC平分线上一点,DE⊥BC交BC于点E
∴DG=DE,∵DF∥BC,
∴∠AFD=∠ABC=30°,
∴2DG=DF,
而DF=4,
∴DG=2,
∴DE=2.
故填空答案:2.
考点梳理
考点
分析
点评
角平分线的性质.
如图,过D作GD⊥AB于G,根据角平分线的性质得到DG=DE,由DF∥BC可以推出∠AFD=∠ABC=30°,然后在△GDF中得到2DG=DF,由此即可求出DE.
此题主要考查了角平分线的性质;解题中利用了平行线的性质,30°的角所对的直角边等于斜边的一半等知识来解题,有一定的综合性,解题关键是通过作辅助性把所求线段和已知线段转换到一个三角形中解决问题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )