试题
题目:
如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.
证明:PE=PF.
答案
解:过点P作PM⊥OA于M,PN⊥OB于N,
∴∠PME=∠PNF=90°,
∵∠AOB=90°,
∴四边形PMON是矩形,
∴∠MPN=90°.
∵∠EPF=90°,
∴∠MPN=∠EPF,
∴∠MPE-∠EPN=∠EPF-∠EPN,
∴∠MPE=∠NPF.
∵OP平分∠AOB,
∴PM=PN.
在△MPE和△NPF中,
∠MPE=∠NPF
∠PME=∠PNF
PM=PN
,
∴△MPE≌△NPF(AAS),
∴PE=PF.
解:过点P作PM⊥OA于M,PN⊥OB于N,
∴∠PME=∠PNF=90°,
∵∠AOB=90°,
∴四边形PMON是矩形,
∴∠MPN=90°.
∵∠EPF=90°,
∴∠MPN=∠EPF,
∴∠MPE-∠EPN=∠EPF-∠EPN,
∴∠MPE=∠NPF.
∵OP平分∠AOB,
∴PM=PN.
在△MPE和△NPF中,
∠MPE=∠NPF
∠PME=∠PNF
PM=PN
,
∴△MPE≌△NPF(AAS),
∴PE=PF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;角平分线的性质.
过点P作PM⊥OA于M,PN⊥OB于N,就可以得出PM=PN,四边形PMON是矩形,就可以得出∠MPN=90°,可以求出∠MPE=∠NPF,证△MPE≌△NPF就可以得出结论.
本题考查了角平分线的性质的运用,矩形的判定及性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
证明题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )