试题
题目:
如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
(1)分别作出D到BA、BC的距离DE、DF;
(2)求证:∠A+∠C=180°.
答案
解:(1)如图所示:
.
(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,
∴DE=DF,∠E=∠DFC=90°,
∴在Rt△DEA和Rt△DFC中
AD=DC
DE=DF
∴Rt△DEA≌Rt△DFC(HL),
∴∠C=∠EAD,
∵∠BAD+∠EAD=180°,
∴∠BAD+∠C=180°.
解:(1)如图所示:
.
(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,
∴DE=DF,∠E=∠DFC=90°,
∴在Rt△DEA和Rt△DFC中
AD=DC
DE=DF
∴Rt△DEA≌Rt△DFC(HL),
∴∠C=∠EAD,
∵∠BAD+∠EAD=180°,
∴∠BAD+∠C=180°.
考点梳理
考点
分析
点评
全等三角形的判定与性质;角平分线的性质.
(1)过D作出DE⊥BA,DF⊥BC即可.
(2)根据角平分线性质求出DE=DF,根据HL证Rt△DEA≌Rt△DFC,推出∠C=∠EAD,根据∠BAD+∠EAD=180°推出即可.
本题考查了角平分线性质和全等三角形的性质和判定的应用,关键是求出∠EAD=∠C.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )