试题
题目:
(2012·仪征市一模)如图,在△ABC中,∠C=90,点D在AC上,将△BCD沿BD翻折,点C落在斜边AB上,DC=2,则点D到斜边AB的距离是
2
2
.
答案
2
解:如图,过D作DE⊥AB于点E,
∵△BCD沿BD翻折,点C落在斜边AB上,
∴∠ABD=∠CBD,
又∵∠C=90,
∴DE=DC,
∵DC=2,
∴DE=2,
即点D到斜边AB的距离是2.
故答案为:2.
考点梳理
考点
分析
点评
角平分线的性质;翻折变换(折叠问题).
过D作DE⊥AB于点E,根据翻折可得∠ABD=∠CBD,再根据角平分线上的点到角的两边的距离相等可得DE=DC,从而得解.
本题考查了角平分线上的点到角的两边的距离相等的性质,翻折变换的性质,判断出∠ABD=∠CBD并熟记角平分线的性质是解题的关键.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )