试题
题目:
点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为( )
A.60°
B.90°
C.120°
D.150°
答案
C
解:连接OA,OB,OC,
∵点O是△ABC内一点,且点O到三边的距离相等,
∴OA、OB、OC分别平分∠BAC、∠ABC、∠ACB,
∵∠BAC=60°,∴∠ABC+∠ACB=120°,
∴∠OBC+∠OCB=120÷2=60°,
∴∠BOC=180-60=120°.
故选C.
考点梳理
考点
分析
点评
角平分线的性质.
根据角平分线的逆定理求出O是三角形的角平分线的交点,再利用三角形内角和等于180度求解.
本题主要考查角平分线的逆定理,同时综合考查了三角形内角和与角平分线的定义.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )