试题
题目:
如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是( )
A.HL
B.AAS
C.SSS
D.ASA
答案
A
解:∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,
又∵OE=OF,AO为公共边,∴△AEO≌△AFO.
故选A.
考点梳理
考点
分析
点评
直角三角形全等的判定;角平分线的性质.
利用点O到AB,AC的距离OE=OF,可知△AEO和△AFO是直角三角形,然后可直接利用HL求证△AEO≌△AFO,即可得出答案.
此题考查学生对直角三角形全等的判定的理解和掌握,解答此题的关键是利用题目中给出的已知条件判定△AEO和△AFO是直角三角形.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )