试题
题目:
证明:等腰三角形底边高上任一点到两腰的距离相等.
答案
已知:△ABC中,AB=AC,AD⊥BC,点E是AD上任一点,且GE⊥AB,FE⊥AC
求证:GE=EF.
证明:∵△ABC中,AB=AC,AD⊥BC
∴∠BAD=∠CAD
∵GE⊥AB,FE⊥AC
∴GE=EF.
已知:△ABC中,AB=AC,AD⊥BC,点E是AD上任一点,且GE⊥AB,FE⊥AC
求证:GE=EF.
证明:∵△ABC中,AB=AC,AD⊥BC
∴∠BAD=∠CAD
∵GE⊥AB,FE⊥AC
∴GE=EF.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;角平分线的性质.
根据等腰三角形三线合一的性质可得到AD也是∠BAC的角平分线,再根据角平分线上的点到角两边的距离相等即可得到结论.
此题主要考查等腰三角形的性质及角平分线的性质的综合运用.
证明题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )