试题
题目:
已知:如图1,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.
(1)求证:BC=CD.
(2)若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,如图2,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.
答案
(1)证明:∵∠D=∠B=90°,
∴CD⊥AD,CB⊥AB,
∵AC平分∠BAD,
∴BC=CD;
(2)解:一定相等.
证明:如图,过点C作CE⊥AD于E,作CF⊥AB于F,
∴∠CBF与∠ABC互补.
∵∠B和∠D都是直角,互为补角,
∴∠D=∠CBF,
又∵AC是∠BAD的平分线,
∴CE=CF,
在Rt△BCF与Rt△DCE中,
∠D=∠CBF
∠DEC=∠CFB
CE=CF
,
∴Rt△BCF≌Rt△DCE(AAS),
∴BC=CD.
(1)证明:∵∠D=∠B=90°,
∴CD⊥AD,CB⊥AB,
∵AC平分∠BAD,
∴BC=CD;
(2)解:一定相等.
证明:如图,过点C作CE⊥AD于E,作CF⊥AB于F,
∴∠CBF与∠ABC互补.
∵∠B和∠D都是直角,互为补角,
∴∠D=∠CBF,
又∵AC是∠BAD的平分线,
∴CE=CF,
在Rt△BCF与Rt△DCE中,
∠D=∠CBF
∠DEC=∠CFB
CE=CF
,
∴Rt△BCF≌Rt△DCE(AAS),
∴BC=CD.
考点梳理
考点
分析
点评
角平分线的性质;全等三角形的判定与性质.
(1)根据角平分线上的点到角的两边的距离相等可得BC=CD;
(2)过点C作CE⊥AD于E,作CF⊥AB于F,根据等角的补角相等求出∠D=∠CBF,根据角平分线上的点到角的两边的距离相等可得CD=CF,然后利用“角角边”证明△BCF和△DCE全等,根据全等三角形对应边相等证明即可.
本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,(2)作辅助线构造出全等三角形是解题的关键,也是本题的难点.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )