试题
题目:
已知:如图,在△ABC中,AD是它的角平分线,且EB=FC,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:BD=CD.
答案
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在△BDE和△CDF中,
EB=FC
∠BED=∠CFD=90°
DE=DF
,
∴△BDE≌△CDF(SAS),
∴BD=CD.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在△BDE和△CDF中,
EB=FC
∠BED=∠CFD=90°
DE=DF
,
∴△BDE≌△CDF(SAS),
∴BD=CD.
考点梳理
考点
分析
点评
专题
角平分线的性质;全等三角形的判定与性质.
根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“边角边”证明△BDE和△CDF全等,根据全等三角形对应边相等证明即可.
本题考查了角平分线上的点到角的两边的距离相等的性质以及全等三角形的判定与性质,是基础题,熟记性质与判定方法是解题的关键.
证明题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )