试题
题目:
如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S
△ABD
:S
△ACD
=( )
A.4:3
B.3:4
C.16:9
D.9:16
答案
A
解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,…(3分)
∴S△ABD=
1
2
·DE·AB=12,
∴DE=DF=3…(5分)
∴S△ADC=
1
2
·DF·AC=
1
2
×3×6=9…(6分)
∴S
△ABD
:S
△ACD
=12:9=4:3.
故选A.
考点梳理
考点
分析
点评
专题
角平分线的性质;三角形的面积.
首先过点D作DE⊥AB,DF⊥AC,由AD是它的角平分线,根据角平分线的性质,即可求得DE=DF,由△ABD的面积为12,可求得DE与DF的长,又由AC=6,则可求得△ACD的面积.
此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性质定理的应用,注意数形结合思想的应用,注意辅助线的作法.
计算题.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )