试题
题目:
O为锐角△ABC的∠C平分线上一点,O关于AC,BC的对称点分别为P,Q,则△PCQ一定是( )
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰直角三角形
答案
B
解:由题意可得,OC平分∠ACB,OP=OQ,则△OPC≌△OQC,
∴PC=QC,即△PCQ一定是等腰三角形.
故选B.
考点梳理
考点
分析
点评
等腰三角形的判定;角平分线的性质.
根据O关于AC,BC的对称点分别为P,Q,得出OP=OQ.通过已知证明△OPC≌△OQC,得出PC=QC,再根据等腰三角形的定义得出.
本题考查了等腰三角形的判定及角平分线的性质;解本题时要充分利用条件,选择适当的方法证明是等腰三角形.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )