试题
题目:
一个三角形三个角的比为1:2:4,证明:角平分线与对边的交点是一个等腰三角形的顶角.
答案
证明:如图,∠C:∠B:∠A=1:2:4,AD平分∠BAC且与BC交于点D
设∠C,∠B,∠A分别为x,2x,4x
∵AD平分∠BAC
∴∠BAD=∠DAC=2x
∵∠BAD=∠B=2x
∴△DAB为等腰三角形
∵∠DAC=2x,∠C=x,∠ADC=4x
∴以点D为顶点的等腰三角形只有一个.
证明:如图,∠C:∠B:∠A=1:2:4,AD平分∠BAC且与BC交于点D
设∠C,∠B,∠A分别为x,2x,4x
∵AD平分∠BAC
∴∠BAD=∠DAC=2x
∵∠BAD=∠B=2x
∴△DAB为等腰三角形
∵∠DAC=2x,∠C=x,∠ADC=4x
∴以点D为顶点的等腰三角形只有一个.
考点梳理
考点
分析
点评
等腰三角形的判定;三角形内角和定理;角平分线的性质.
设∠C,∠B,∠A分别为x,2x,4x,根据三角形内角和定理及角平分线的性质可求得∠BAD=∠DAC=2x,从而可判定△DAB为等腰三角形.
此题主要考查学生对等腰三角形的判定,三角形内角和定理及角平分线的性质的综合运用能力.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )