试题
题目:
和三角形三条边距离相等的点是( )
A.三条角平分线的交点
B.三边中线的交点
C.三边上高所在直线的交点
D.三边的垂直平分线的交点
答案
A
解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;
高的交点是三角形的垂心,到三边的距离不相等,C错误;
线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;
∵角平分线上的点到角两边的距离相等,
∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.
故选A.
考点梳理
考点
分析
点评
角平分线的性质.
题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.
本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )