试题
题目:
如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABE,DE⊥BC,如果BC=10cm,则△DEC的周长是( )
A.8cm
B.10cm
C.11cm
D.12cm
答案
B
解:∵BD平分∠ABE,DE⊥BC,DA⊥AB
∴AD=DE
又∵BD=BD
∴△BAD≌△BED(HL)
∴AB=BE
又∵AB=AC
∴BE=AC
BC=BE+EC=AC+EC=AD+DC+EC=DE+DC+EC=10cm
∴△DEC的周长是10cm,
故选B.
考点梳理
考点
分析
点评
角平分线的性质.
根据角平分线的性质,得AD=DE,利用HL判定BAD≌△BED,得出AB=BE,进而得出BC=DE+DC+EC=10.
本题主要考查了角平分线的性质、全等三角形的判定及其性质等知识.要通过全等把相等的线段转到转到一个三角形中.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )