试题
题目:
如图所示,P,Q分别是BC,AC上的点,作PR⊥AB于R点,作PS⊥AC于S点,若AQ=PQ,PR=PS,下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,正确的是( )
A.①和③
B.②和③
C.①和②
D.①,②和③
答案
C
解:连接AP,
∵PR=PS,
∴AP是∠BAC的平分线,
∴△APR≌△APS(HL)
∴AS=AR,①正确.
∵AQ=PQ
∴∠BAP=∠QAP=∠QPA
∴QP∥AR,②正确.
BC只是过点P,并没有固定,明显△BRP≌△CSP③不成立.
故选C.
考点梳理
考点
分析
点评
直角三角形全等的判定;角平分线的性质.
根据角平分线的判定,先证AP是∠BAC的平分线,再证△APR≌△APS(HL),可证得AS=AR,QP∥AR成立.
本题主要考查三角形全等的判定方法,以及角平分线的判定和平行线的判定,难度适中.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )