试题
题目:
如图.△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为2,则点P到AB的距离为( )
A.1
B.2
C.3
D.4
答案
B
解:如图,过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,
∵BD、CE是△ABC的外角平分线,
∴PF=PG,PG=PH,
∴PF=PG=PH,
∵点P到AC的距离为2,
∴PH=2,
即点P到AB的距离为2.
故选B.
考点梳理
考点
分析
点评
角平分线的性质.
过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,然后根据角平分线上的点到角的两边的距离相等即可得解.
本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作出辅助线是解题的关键.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )