试题
题目:
如图是可以自由转动的转盘,该转盘被分成6个相等的扇形区域
(1)请你在转盘的适当地方涂上不同的颜色,使得自由转动这个转盘,当它停止转动后,指针落在涂有颜色的区域的概率是
2
3
.
(2)如果利用你涂好颜色的转盘来决定甲、乙两位同学谁今天值日,你认为公平吗?若认为公平,请简要说明理由;若认为不公平,请提出公平合理的涂色方案.
答案
解:(1)根据题意得:
(2)不公平,
因为概率不相等.建议平均分成两份,分别涂色即可
如:P(指针落在偶数所在区域)=P(指针落在奇数所在区域)
这样才能保证对甲、乙双方是公平的.
解:(1)根据题意得:
(2)不公平,
因为概率不相等.建议平均分成两份,分别涂色即可
如:P(指针落在偶数所在区域)=P(指针落在奇数所在区域)
这样才能保证对甲、乙双方是公平的.
考点梳理
考点
分析
点评
游戏公平性;概率公式.
(1)首先确定指针落在该颜色的区域的概率是
2
3
,再在转盘涂上红色所占的比例即可.
(2)首先确定出事件发生的所有情况,分别算出甲胜和乙获胜发生的概率,比较概率的大小,即可判定游戏的公平性,如不公平,设计出两人发生的概率相同就可解决问题.
本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.
找相似题
小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗( )
(2005·泉州质检)一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
若“抢30”游戏,规划是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就得胜,若改成“抢32”,那么采取适当策略,其结果是( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为( )