试题
题目:
(2009·三明质检)甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.
(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;
(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
答案
解:
(1)解法一:树状图
(3分)
∴P(两个球上的数字之和为6)=
2
9
.(2分)
解法二:列表
2
3
4
1
(1,2)
(1,3)
(1,4)
2
(2,2)
(2,3)
(2,4)
3
(3,2)
(3,3)
(3,4)
∴P(两个球上的数字之和为6)=
2
9
.
(2)不公平.(1分)
∵P(小亮胜)=
5
9
,P(小刚胜)=
4
9
.(2分)
∴P(小亮胜)≠P(小刚胜).
∴这个游戏不公平.(2分)
解:
(1)解法一:树状图
(3分)
∴P(两个球上的数字之和为6)=
2
9
.(2分)
解法二:列表
2
3
4
1
(1,2)
(1,3)
(1,4)
2
(2,2)
(2,3)
(2,4)
3
(3,2)
(3,3)
(3,4)
∴P(两个球上的数字之和为6)=
2
9
.
(2)不公平.(1分)
∵P(小亮胜)=
5
9
,P(小刚胜)=
4
9
.(2分)
∴P(小亮胜)≠P(小刚胜).
∴这个游戏不公平.(2分)
考点梳理
考点
分析
点评
游戏公平性;列表法与树状图法.
游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
找相似题
小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗( )
(2005·泉州质检)一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
若“抢30”游戏,规划是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就得胜,若改成“抢32”,那么采取适当策略,其结果是( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为( )