试题
题目:
(2012·六合区一模)有3张背面相同的卡片,正面分别写着数字“1”、“2”、“3”.将卡片洗匀后背面朝上放在桌面上.
(1)若小明从中任意抽取一张,则抽到奇数的概率是
2
3
2
3
;
(2)若小明从中任意抽取一张后,小亮再从剩余的两张卡片中抽取一张,规定:抽到的两张卡片上的数字之和为奇数,则小明胜,否则小亮胜.你认为这个游戏公平吗?请用画树状图或列表的方法说明你的理由.
答案
2
3
解:(1)∵1,2,3三个数字中1和3为奇数,
∴P(抽到奇数)=
2
3
,
故答案为:
2
3
;
(2)这个游戏不公平.
列表如下:
共有6种可能结果,它们是等可能的,其中“和为奇数”有4种,“和为偶数”有2种.
∴P(和为奇数)=
2
3
,P(和为偶数)=
1
3
,
∵
2
3
>
1
3
∴这个游戏不公平.
考点梳理
考点
分析
点评
游戏公平性;列表法与树状图法.
(1)让奇数个数除以数的总数即可;
(2)用列表法列举出所有情况,看小明抽到的数字之和为奇数的情况占所有情况的多少即可求得小明赢的概率,进而求得小亮赢的概率,比较即可.
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
找相似题
小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗( )
(2005·泉州质检)一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
若“抢30”游戏,规划是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就得胜,若改成“抢32”,那么采取适当策略,其结果是( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为( )