试题
题目:
从1,2,3…2004中任选k个数,使所选的k个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形边长互不相等),试问满足条件的k的最小值是
17
17
.
答案
17
解:为使k达到最大,可选加入之数等于已得数组中最大的两数之和,这样得:
1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597 ①
共16个数,对符合上述条件的任数组,a
1
,a
2
…a
n
显然总有a
i
大于等于①中的第i个数,
所以n≤17≤k,从而知k的最小值为17.
故答案为:17.
考点梳理
考点
分析
点评
专题
三角形三边关系.
这一问题等价于在1,2,3,2004中选k个数,使其中任意三个数都不能成为三边互不相等的一个三角形三边的长,试问满足这一条件的k的最大值是多少?符合上述条件的数组,当k=4时,最小的三个数就是1,2,3,由此可不断扩大该数组,只要加入的数大于或等于已得数组中最大的两个数之和.
本题考查了三角形三边关系.解题关键是得到加入之数等于已得数组中最大的两数之和的16个数,从而列不等式求出k的最小值.
规律型.
找相似题
(2013·宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
(2013·温州)下列各组数可能是一个三角形的边长的是( )
(2012·台湾)如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?( )
(2011·徐州)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为( )
(2011·滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )