试题
题目:
如图,已知△ABC的三边AB、AC、BC的长分别为20、30、40,其三条角平分线交于点O,则S
△AOB
:S
△AOC
:S
△BOC
=
2:3:4
2:3:4
.
答案
2:3:4
解:先过点O作OD⊥AB,OE⊥AC,OF⊥BC于点D、E、F,
∵点O是三条角平分线的交点,
∴OD=OE=OF,
∴S
△AOB
:S
△AOC
:S
△BOC
=AB:AC:BC=20:30:40=2:3:4.
故答案为:2:3:4.
考点梳理
考点
分析
点评
角平分线的性质.
先过点O作OD⊥AB,OE⊥AC,OF⊥BC于点D、E、F,再根据角平分线的性质得出OD=OE=OF,由三角形的面积公式即可得出结论.
本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2007·中山)到三角形三条边的距离都相等的点是这个三角形的( )
(2005·盐城)如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是( )
(2005·乌兰察布)如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上.下列条件中不能推出AB=AB′的是( )
(2005·海南)如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )