试题
题目:
直角坐标系中,已知点A(-1,2)、点B(5,4),x轴上一点P(x,0)满足PA+PB最短,则x=
1
1
.
答案
1
解:作点A关于x轴的对称点A′,连接A′B,设过A′B的直线解析式为y=kx+b(k≠0),
则
-k+b=-2
5k+b=4
,
解得
k=1
b=-1
,
故此直线的解析式为:y=x-1,
当y=0时,x=1.
故答案为:1.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;坐标与图形性质.
先画出直角坐标系,标出A、B点的坐标,再求出A点关于x轴的对称点A′,连接A′B,交x轴于点P,则P即为所求点,用待定系数法求出过A′B两点的直线解析式,求出此解析式与x轴的交点坐标即可.
本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.
待定系数法.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
在直角坐标系中,已知点A(-3,2),B(2,-4),在x轴上找一点C,使AC+BC最短,则点C的坐标为( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.