试题
题目:
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.2
3
B.2
6
C.3
D.
6
答案
A
解:设BE与AC交于点F(P'),连接BD,
∵点B与D关于AC对称,
∴P'D=P'B,
∴P'D+P'E=P'B+P'E=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
∵正方形ABCD的面积为12,
∴AB=2
3
.
又∵△ABE是等边三角形,
∴BE=AB=2
3
.
故所求最小值为2
3
.
故答案为:2
3
.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题.
由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.
此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
计算题;压轴题.
找相似题
在直角坐标系中,已知点A(-3,2),B(2,-4),在x轴上找一点C,使AC+BC最短,则点C的坐标为( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.
如图,一牧童在A处牧马,牧童家在B处,A、B处距河岸的距离AC、BD的长分别为500m和700m,且C、D两地的距离为500m,天黑前牧童从A点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )