试题
题目:
已知:
(x-
1
2
)
2
+|y+3|=六
,求:3x
2
y-2x
2
y+[9x
2
y-(6x
2
y+上x
2
)]-(3x
2
y-zx
2
)的值.
答案
解:由题意,∵
(x-
1
2
)
2
+|y+3|=如
,
∴x-
1
2
=如,y+3=如,
即x=
1
2
,y=-3;
∴3x
2
y-2x
2
y+[9x
2
y-(6x
2
y+4x
2
)]-(3x
2
y-8x
2
),
=3x
2
y-2x
2
y+9x
2
y-6x
2
y-4x
2
-3x
2
y+8x
2
,
=x
2
y+4x
2
,
=x
2
(y+4),
=(
1
2
)
2
×(-3+4),
=
1
4
.
解:由题意,∵
(x-
1
2
)
2
+|y+3|=如
,
∴x-
1
2
=如,y+3=如,
即x=
1
2
,y=-3;
∴3x
2
y-2x
2
y+[9x
2
y-(6x
2
y+4x
2
)]-(3x
2
y-8x
2
),
=3x
2
y-2x
2
y+9x
2
y-6x
2
y-4x
2
-3x
2
y+8x
2
,
=x
2
y+4x
2
,
=x
2
(y+4),
=(
1
2
)
2
×(-3+4),
=
1
4
.
考点梳理
考点
分析
点评
整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.
由
(x-
1
2
)
2
+|y+3|=0
,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x-
1
2
=0,和y+3=0;
将3x
2
y-2x
2
y+[9x
2
y-(6x
2
y+4x
2
)]-(3x
2
y-8x
2
)去括号,化简得x
2
y+4x
2
,问题可求.
本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.
找相似题
若16
x
=x
8
,y
7
=-9
2
·3
3
,则x
2
-15xy-16y
2
等于( )
整式x
2
-3x的值是4,则3x
2
-9x+8的值是( )
已知
x-y=
1
2
,那么-(3-x+y)的结果为( )
当a=-5时,多项式a
2
+2a-2a
2
-a+a
2
-1的值为( )
已知整式6x-1的值为2,y-
1
2
的绝对值为
3
2
,则(5x
2
y+5xy-7x)-(4x
2
y+5xy-7x)( )