试题
题目:
如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE=2,则AB、CD之间的距离为( )
A.2
B.4
C.6
D.8
答案
B
解:作OF⊥AB,延长FO与CD交于G点,
∵AB∥CD,∴FG垂直CD,
∴FG就是AB与CD之间的距离.
∵∠ACD平分线的交点,OE⊥AC交AC于E,
∴OE=OF=OG,
∴AB与CD之间的距离等于2OE=4.
故选B.
考点梳理
考点
分析
点评
专题
平行线之间的距离.
要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.
本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB与CD之间的距离是正确解决本题的关键.
计算题.
找相似题
把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )
如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为( )
如图,AB∥CD,O为∠BAC,∠ACD的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD间的距离为( )
如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是( )
在同一平面内,已知直线a∥b∥c,若直线a与直线b之间的距离为5,直线a与直线c之间的距离为3,则直线b与直线c之间的距离为( )