试题
题目:
甲处有57人劳动,乙处有43人劳动,现调80人支援这两处,使甲处劳动的人数是乙处劳动人数的2倍,若设调往甲处x人列出一元一次方程为
57+x=2(43+80-x)
57+x=2(43+80-x)
;若设调往甲处x人,调往乙处y人,则列出二元一次方程组为
x+y=80
57+x=2(43+y)
x+y=80
57+x=2(43+y)
.
答案
57+x=2(43+80-x)
x+y=80
57+x=2(43+y)
解:若设调往甲处x人列出一元一次方程为57+x=2(43+80-x);
若设调往甲处x人,调往乙处y人,则列出二元一次方程组为
x+y=80
57+x=2(43+y)
故答案为:57+x=2(43+80-x);
x+y=80
57+x=2(43+y)
;
考点梳理
考点
分析
点评
由实际问题抽象出二元一次方程组;由实际问题抽象出一元一次方程.
根据甲处劳动的人数是乙处劳动人数的2倍这一等量关系列出一元一次方程即可;
根据将80人分配到两次使得甲处劳动的人数是乙处劳动人数的2倍列出方程组即可.
考查了方程问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
找相似题
一根木棒长8m,分成两段,其中一段比另一段长1m,求这两段的长时,设其中一段为xm,另一段长为ym,那么可列二元一次方程组为
x+y=8
x-y=1
x+y=8
x-y=1
.
学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则可列方程组
x+y=35
8x+6y=250
x+y=35
8x+6y=250
,方程组的解为x=
20
20
,y=
15
15
.
某工厂第一季度生产甲、乙两种机器480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%,设该厂第一季度生产甲、乙两种机器各x、y台,则可列方程组为
x+y=480
(1+10%)x+(1+20%x)y=554
x+y=480
(1+10%)x+(1+20%x)y=554
.
某年级有学生246人,其中男生比女生人数的2倍少3人,问男女学生各多少人?设女生人数为x人,男生人数为y人,可列方程组为
x+y=246
y=2x-3
x+y=246
y=2x-3
.
甲乙两条绳长共17米,如果甲绳减去它的
1
5
,乙绳增加1米,两条绳长相等,求甲乙两绳长度?设甲绳长x米,乙绳长y米,则可列方程组为
x+y=17
x-
1
5
x=y+1
x+y=17
x-
1
5
x=y+1
.