试题
题目:
如图,在△ABC中,∠B=90°,AB=8,BC=6,P为直线AB上一点,且△ACP为等腰三角形,符合条件的P点有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:在△ABC中,∠B=90°,AB=8,BC=6,由勾股定理得:AC=10,
以A为圆心,以10为半径画弧,交直线AB于两点;
以C为圆心,以10为半径画弧,交直线AB于两点(A和另一个点);
作线段AC的垂直平分线交直线AB于一点,
即共2+1+1=4个点,
故选D.
考点梳理
考点
分析
点评
等腰三角形的判定;勾股定理.
根据勾股定理求出AC,分为三种情况:①AC=AP,②AC=CP,③AP=CP,得出即可.
本题考查了等腰三角形的判定和勾股定理的应用,用了分类讨论思想.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
(2012·毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( )