试题

题目:
青果学院如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.
答案
青果学院解:∵∠C=90°,AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=
62+82
=10cm,
过点D作DE⊥AB、DF⊥BC、DG⊥AC,垂足分别为E、F、G,
∵AD和BD分别是∠BAC和∠ABC的平分线,
∴DE=DF=DG,
∴S△ABC=
1
2
AC·BC=
1
2
(AB+BC+AC)·DF,
1
2
×6×8=
1
2
(10+8+6)·DF,
解得DF=2,
即点D到BC的距离为2cm.
青果学院解:∵∠C=90°,AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=
62+82
=10cm,
过点D作DE⊥AB、DF⊥BC、DG⊥AC,垂足分别为E、F、G,
∵AD和BD分别是∠BAC和∠ABC的平分线,
∴DE=DF=DG,
∴S△ABC=
1
2
AC·BC=
1
2
(AB+BC+AC)·DF,
1
2
×6×8=
1
2
(10+8+6)·DF,
解得DF=2,
即点D到BC的距离为2cm.
考点梳理
角平分线的性质;勾股定理.
利用勾股定理求出AB的长,再根据角平分线上的点到角的两边的距离相等可得点D到△ABC三边的距离相等,然后利用△ABC的面积列式计算即可得解.
本题考查了角平分线的性质,勾股定理,作辅助线,根据角平分线上的点到角的两边的距离相等得到点D到△ABC三边的距离相等是解题的关键.
找相似题