试题
题目:
如图是某年召开的国际数学家大会会标,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a
3
+b
3
的值为( )
A.35
B.43
C.91
D.152
答案
A
解:由题意得:大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,
即a
2
+b
2
=13,a-b=1,
解得a=3,b=2,
∴a
3
+b
3
=35,
故两条直角三角形的两条边的立方和=a
3
+b
3
=35.
故选A.
考点梳理
考点
分析
点评
勾股定理.
设每个直角三角形的两条直角边分别是a、b(a>b),则根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a、b,求a
3
+b
3
即可.
本题考查了勾股定理在直角三角形中的灵活运用,考查了正方形面积的计算,本题中列出方程组并求解是解题的关键.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
(2012·毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( )