试题
题目:
(2013·兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=
1
2
x
2
+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是
-2<k<
1
2
-2<k<
1
2
.
答案
-2<k<
1
2
解:由图可知,∠AOB=45°,
∴直线OA的解析式为y=x,
联立
y=x
y
=
1
2
x
2
+k
消掉y得,
x
2
-2x+2k=0,
△=(-2)
2
-4×1×2k=0,
即k=
1
2
时,抛物线与OA有一个交点,
此交点的横坐标为1,
∵点B的坐标为(2,0),
∴OA=2,
∴点A的坐标为(
2
,
2
),
∴交点在线段AO上;
当抛物线经过点B(2,0)时,
1
2
×4+k=0,
解得k=-2,
∴要使抛物线y=
1
2
x
2
+k与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<
1
2
.
故答案为:-2<k<
1
2
.
考点梳理
考点
分析
点评
专题
二次函数的性质.
根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.
本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.
压轴题.
找相似题
(2013·徐州)二次函数y=ax
2
+bx+c图象上部分点的坐标满足下表:
x
…
-3
-2
-1
0
1
…
y
…
-3
-2
-3
-6
-11
…
则该函数图象的顶点坐标为( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·南宁)已知二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
(2013·内江)若抛物线y=x
2
-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )