试题

题目:
函数y=ax2+c(a≠0)的图象的对称轴是
y轴
y轴
;顶点坐标是
(0,c)
(0,c)

答案
y轴

(0,c)

解:根据抛物线顶点式y=a(x-h)2+k,
得函数y=ax2+c(a≠0)的图象的对称轴是y轴,顶点坐标是(0,c).
故填空答案:y轴,(0,c).
考点梳理
二次函数的性质.
由于抛物线顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h,由此可以得到函数y=ax2+c(a≠0)的图象的对称轴,顶点坐标.
求抛物线的顶点坐标、对称轴及最值通常有两种方法:
(1)公式法:y=ax2+bx+c的顶点坐标为(-
b
2a
4ac-b2
4a
),对称轴是x=-
b
2a

(2)配方法:将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.
找相似题