试题
题目:
如图,在四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2
2
.求BC的长.
答案
解:作BE⊥AD于E,
∴∠BEA=∠BED=90°.
∵∠A=45°,
∴∠ABE=45°.
∵∠ABD=75°,
∴∠EBD=30°.
∵∠DBC=30°,
∴∠DBE=∠DBC.
∵∠C=90°,
∴∠BED=∠C.
在△BDE和△BDC中,
∠BED=∠C
∠DBE=∠DBC
BD=BD
,
∴△BDE≌△BDC(AAS),
∴BE=BC.
在Rt△ABE中,AB=2
2
,由勾股定理,得
BE=2
∴BC=2.
答:BC=2.
解:作BE⊥AD于E,
∴∠BEA=∠BED=90°.
∵∠A=45°,
∴∠ABE=45°.
∵∠ABD=75°,
∴∠EBD=30°.
∵∠DBC=30°,
∴∠DBE=∠DBC.
∵∠C=90°,
∴∠BED=∠C.
在△BDE和△BDC中,
∠BED=∠C
∠DBE=∠DBC
BD=BD
,
∴△BDE≌△BDC(AAS),
∴BE=BC.
在Rt△ABE中,AB=2
2
,由勾股定理,得
BE=2
∴BC=2.
答:BC=2.
考点梳理
考点
分析
点评
全等三角形的判定与性质;角平分线的性质;等腰直角三角形.
作BE⊥AD于E,就可以得出△ABE为等腰直角三角形,由勾股定理就由求出BE的值,由△BDE≌△BDC就可以得出BC=BE得出结论.
本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )