题目:
(2009·邯郸二模)两个等腰直角三角形ABC,ADE,如图①摆放(E点在AB上),连BD,取BD的中点P,连PC、PE,则有PC=PE,PC⊥PE.
(1)将△ADE绕点A逆时针方向旋转,使E点落在AC上,如图②,结论是否仍成立?请证明你的判断.如果你经过反复探索,没有找到解决问题的办法,可通过连接AP,延长PE或延长DE,延长AD,延长BC的途径来完成你的证明.
(2)如图③,当△ADE绕点A逆时针方向旋转30°时,连DC,若DC∥AB,求
的值.
答案
解:(1)结论仍然成立.理由为:
连接AP,延长PE交AD于点M,
∵△ABC、△ADE均为等腰直角三角形,
∴∠BAC=∠DAE=45°,∴∠DAB=90°,
∵P为BD中点,∴PA=PB=PD,
在△APC和△BPC中,
,
∴△APC≌△BPC(SSS),
∴∠ACP=∠BCP=
∠ACB=45°,
同理可得△APE≌△DPE,
∴∠APE=∠DPE,∠PAE=∠PDE,
∴∠APE+∠PAE=∠DPE+∠PDE,即∠AEM=∠DEM=
∠AED=45°,
∴∠CEP=∠AEM=45°,
∴∠CPE=90°,
∴△CPE为等腰直角三角形,即PC=PE,PC⊥PE;

(2)过D作DF⊥AC,垂足为F,
∵DC∥AB,∴∠DCF=∠CAB=45°,
∴DF=CF,
在Rt△ADF中,∠DAF=30°,
设DF=k,则有AD=2k,AF=
k,
∴AC=AF+FC=
k+k=(
+1)k,
∴
=
=
.
解:(1)结论仍然成立.理由为:
连接AP,延长PE交AD于点M,
∵△ABC、△ADE均为等腰直角三角形,
∴∠BAC=∠DAE=45°,∴∠DAB=90°,
∵P为BD中点,∴PA=PB=PD,
在△APC和△BPC中,
,
∴△APC≌△BPC(SSS),
∴∠ACP=∠BCP=
∠ACB=45°,
同理可得△APE≌△DPE,
∴∠APE=∠DPE,∠PAE=∠PDE,
∴∠APE+∠PAE=∠DPE+∠PDE,即∠AEM=∠DEM=
∠AED=45°,
∴∠CEP=∠AEM=45°,
∴∠CPE=90°,
∴△CPE为等腰直角三角形,即PC=PE,PC⊥PE;

(2)过D作DF⊥AC,垂足为F,
∵DC∥AB,∴∠DCF=∠CAB=45°,
∴DF=CF,
在Rt△ADF中,∠DAF=30°,
设DF=k,则有AD=2k,AF=
k,
∴AC=AF+FC=
k+k=(
+1)k,
∴
=
=
.