试题
题目:
抛物线y=ax
2
+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.
x
…
-3
-2
-1
0
1
…
y
…
-6
0
4
6
6
…
给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有( )
A.1个
B.2个
C.3个
D.4个
答案
B
解:根据图表,抛物线与y轴交与(0,6),①正确;
∵抛物线经过点(0,6)和(1,6),
∴对称轴为x=
0+1
2
=
1
2
,
∴②正确;
设抛物线经过点(x,0),
∴x=
1
2
=
-2+x
2
解得:x=3
∴抛物线一定经过(3,0),
故③错误;
在对称轴左侧,y随x增大而增大,④错误
故选B.
考点梳理
考点
分析
点评
二次函数的性质.
根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0);因此可得抛物线的对称轴是直线x=
1
2
,再根据抛物线的性质即可进行判断.
本题考查了抛物线y=ax
2
+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.
找相似题
(2013·徐州)二次函数y=ax
2
+bx+c图象上部分点的坐标满足下表:
x
…
-3
-2
-1
0
1
…
y
…
-3
-2
-3
-6
-11
…
则该函数图象的顶点坐标为( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·南宁)已知二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
(2013·内江)若抛物线y=x
2
-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )