试题
题目:
(2010·天桥区二模)已知,等腰直角三角形ABC中,∠C=90°,直线l过点C,过点A,B分别作l的垂线,垂足分别为E,F.
(1)观察图(1),你能发现EF、AE、BF三者之间的一种数量关系吗?请你将它写出来;
(2)在图(2)中,上面的关系成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(3)当直线l绕点C转到什么位置时EF=BF-AE?在图(3)中画出直线l及AE和BF(不必证明).
答案
解:(1)EF=AE+BF.(2分)
(2)成立;(3分)
证明:∵∠EAC+∠ACE=90°,∠ACE+∠BCE=90°,
∴∠EAC=∠FCB,
又∵∠AEC=∠CFB=90°,且AC=BC,
∴△AEC≌△CFB(AAS).(6分)
∴AE=CF,EC=FB.(7分)
∴EF=AE+BF.(8分)
(3)如右图.(9分)
解:(1)EF=AE+BF.(2分)
(2)成立;(3分)
证明:∵∠EAC+∠ACE=90°,∠ACE+∠BCE=90°,
∴∠EAC=∠FCB,
又∵∠AEC=∠CFB=90°,且AC=BC,
∴△AEC≌△CFB(AAS).(6分)
∴AE=CF,EC=FB.(7分)
∴EF=AE+BF.(8分)
(3)如右图.(9分)
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
(1)由题中条件可知ABFE是矩形,且AB∥EF,则∠EAC=∠ECA=∠CAB=45°,所以AE=EC;同理可得BF=FC,即可得EF=AE+BF;
(2)由AAS可以确定△AEC≌△CFB(AAS),得到AE=CF,EC=FB,即得
EF=AE+BF.
(3)当l绕点C转到AB之间位置时EF=BF-AE.
本题主要考查直角三角形全等的判定,先根据已知条件或求证的结论确定直角三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
探究型.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )