试题

题目:
青果学院(2013·大兴区二模)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.
答案
BE=EC,BE⊥EC.
证明:∵AC=2AB,点D是AC的中点,
∴AB=AD=CD,
∵∠EAD=∠EDA=45°,
∴∠EAB=∠EDC=135°,
∵在△EAB和△EDC中,
AE=ED
∠EAB=∠EDC
AB=DC

∴△EAB≌△EDC(SAS),
∴∠AEB=∠DEC,EB=EC,
∴∠BEC=∠AED=90°,
∴BE=EC,BE⊥EC.
BE=EC,BE⊥EC.
证明:∵AC=2AB,点D是AC的中点,
∴AB=AD=CD,
∵∠EAD=∠EDA=45°,
∴∠EAB=∠EDC=135°,
∵在△EAB和△EDC中,
AE=ED
∠EAB=∠EDC
AB=DC

∴△EAB≌△EDC(SAS),
∴∠AEB=∠DEC,EB=EC,
∴∠BEC=∠AED=90°,
∴BE=EC,BE⊥EC.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
求出AB=DC,∠EAB=∠EDC,根据SAS证△EAB≌△EDC推出∠AEB=∠DEC,EB=EC即可.
本题考查了等腰直角三角形,全等三角形的性质和判定的应用,关键是推出△EAB≌△EDC.
找相似题