试题
题目:
(2013·邢台一模)如图,△AOB、△COD是等腰直角三角形,点D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
答案
(
1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,
∴∠DOB=∠AOC,
又∵OC=OD,OA=OB,
OC=OD
∠DOB=∠AOC
OA=OB
,
∴△AOC≌△BOD(SAS);
(2)解:∵△AOC≌△BOD,
∴AC=BD=1,∠CAO=∠DBO=45°,
∴∠CAB=∠CAO+∠BAO=90°,
∴CD=
A
C
2
+A
D
2
=
10
(
1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,
∴∠DOB=∠AOC,
又∵OC=OD,OA=OB,
OC=OD
∠DOB=∠AOC
OA=OB
,
∴△AOC≌△BOD(SAS);
(2)解:∵△AOC≌△BOD,
∴AC=BD=1,∠CAO=∠DBO=45°,
∴∠CAB=∠CAO+∠BAO=90°,
∴CD=
A
C
2
+A
D
2
=
10
考点梳理
考点
分析
点评
全等三角形的判定与性质;等腰直角三角形.
(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.
此题为全等三角形判定的综合题.考查学生综合运用数学知识的能力.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )