试题
题目:
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=
1
2
BE?并证明你的判断.
答案
解:当BD是∠ABC的平分线时,CD=
1
2
BE,
理由是:延长BA和CD交于F,
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠FAC=90°=∠BDC,
∵∠AEB=∠DEC,
根据三角形的内角和定理得:∠ABE=∠FCA,
在△ABE和△ACF中
∠BAE=∠CAF
AB=AC
∠ABE=∠ACF
,
∴△ABE≌△ACF,
∴CF=BE,
∵BD是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠FDB=∠CDB,
在△FDB和△CDB中
∠FBD=∠CBD
BD=BD
∠FDB=∠CDB
,
∴△FDB≌△CDB,
∴CD=DF=
1
2
CF=
1
2
BE,
即当BD是∠ABC的平分线时,CD=
1
2
BE.
解:当BD是∠ABC的平分线时,CD=
1
2
BE,
理由是:延长BA和CD交于F,
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠FAC=90°=∠BDC,
∵∠AEB=∠DEC,
根据三角形的内角和定理得:∠ABE=∠FCA,
在△ABE和△ACF中
∠BAE=∠CAF
AB=AC
∠ABE=∠ACF
,
∴△ABE≌△ACF,
∴CF=BE,
∵BD是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠FDB=∠CDB,
在△FDB和△CDB中
∠FBD=∠CBD
BD=BD
∠FDB=∠CDB
,
∴△FDB≌△CDB,
∴CD=DF=
1
2
CF=
1
2
BE,
即当BD是∠ABC的平分线时,CD=
1
2
BE.
考点梳理
考点
分析
点评
专题
等腰直角三角形;三角形内角和定理;全等三角形的判定与性质.
延长BA和CD交于F,求出∠ABE=∠FCA,根据ASA证△ABE≌△ACF,求出BE=CF,证△FBD≌△CBD,推出CD=DF即可.
本题考查了对等腰直角三角形,全等三角形的性质和判定,三角形的内角和定理等知识点的应用,关键是正确作辅助线后构造全等的三角形,通过做此题培养了学生的阅读问题和分析问题的能力,题型较好.
证明题.
找相似题
(2013·宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )
(2010·雅安)如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是( )
(2010·攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是( )