角平分线的性质;勾股定理;等腰直角三角形.
(1)由∠C=90°,AD是∠BAC的角平分线,DE⊥AB,根据角平分线的性质,即可得CD=DE,又由在△ABC中,AC=BC,∠C=90°,根据等腰三角形的性质,可求得AC=BC,∠B=45°,然后利用三角函数,即可求得AC的长;
(2)首先证得AC=AE,又由(1)易得CD=DE=BE,然后利用线段的和差关系与等量代换的知识,即可求得AB-AC=CD.
此题考查了角平分线的性质,等腰直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意角平分线定理的应用.